
mruby



What to expect

What we’re going to see

● Intro to mruby and its ecosystem
● How to build mruby executables
● Presentation of a TUI framework built with mruby

This talk is beginner-friendly—no deep dives into C internals like GC, memory 
management, or cross-compilation



mruby

Wow a Lego block!
That must be easy



LOL



What is mruby?

mruby is the lightweight implementation of the Ruby language complying with part 
of the ISO standard.

https://www.ruby-lang.org/
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=59579


What is mruby?

● Short for Embedded Ruby
● Latest version: 3.4
● Lua equivalent
● Single threaded
● Only a thing in Japan
● Limitations: 

○ https://github.com/mruby/mruby/blob/master/doc/limitations.md 
○ No “require”
○ Anything outside the ISO standard probably not implemented

■ No pattern matching 
■ No Struct keyword_init
■ …

https://github.com/mruby/mruby/blob/master/doc/limitations.md


Who is mruby for?

󰞵 Embedded Developers (mruby & mruby/c)

Microcontrollers, firmware, appliances

🛠 CLI & Tooling Developers

Standalone executables

🎮 Game & UI Developers

2D games. Example: DragonRuby



mruby vs Ruby: Architecture and Philosophy

libruby.a

mruby Ruby

Ruby

libmruby.a

Lightweight Ruby

mruby is statically 
built

CRuby is dynamically 
extended

No require necessary



mrbgems

A mrbgem is a reusable component or library written in Ruby, C, or both. They are 
statically linked at build time, not dynamically loaded like regular Ruby gems. 

It allows you to extend the mruby core:

● Create custom reusable Ruby code
● Create C extensions and bindings
● Configuration and initialization code

LIST OF MRBGEMS & DOCS

https://github.com/mruby/mruby/tree/master/mrbgems
https://github.com/mruby/mruby/blob/master/doc/guides/mrbgems.md


mrbgems



Gemboxes

A gembox is a Ruby file that defines a list of conf.gem entries—essentially a 
predefined gem bundle. https://github.com/mruby/mruby/tree/master/mrbgems 

https://github.com/mruby/mruby/tree/master/mrbgems


Building/Compiling mruby

Note, mruby can also be cross-compiled from one 
platform to another via a MRuby::CrossBuild



Embedding mruby in C

C program

Ruby script

.c

Main C logic

mrb_state (mruby runtime environment)

Bytecode conversion
Compiled 

Ruby 
bytecode

.c

Same 
libmruby.a
Different usage

mruby compiler 
(mrbc)

libmruby.aRUBY

.rb

Can poke the mrb_state to 
create and access classes 
objects etc.

Can be interpreted 
and executed by 

mrb_state



Embedding mruby in C



Creating a simple executable

1. Build mruby “image” with required dependencies
2. You create a ruby program (.rb)
3. You convert it into bytecode with mrbc
4. You inject the bytecode in your C program
5. You compile your C program
6. You run the executable



C Examples



Tui-rb framework

Built on top of Clay and Termbox2

Motivation: Pushing the use of Ruby to other platforms and use cases

● Termbox2
○ https://github.com/AlexB52/mruby-termbox2 
○ https://github.com/termbox/termbox2 

● Clay
○ https://github.com/AlexB52/mruby-clay 
○ https://github.com/nicbarker/clay 

https://github.com/AlexB52/mruby-termbox2
https://github.com/termbox/termbox2
https://github.com/AlexB52/mruby-clay
https://github.com/nicbarker/clay


Insights

● Testing and Debugging aren’t friendly
● Dependency management
● 1MB minimum size to include mruby in a binary
● AI helps a lot with onboarding
● References to mruby API is consistent (almost) but hard to navigate

○ A cheatsheet would be nice
○ Mruby-handbook is amazing



Aside: Everything is an object

May contain immediate values (fixnums, symbols, 
true/false/nil), or a pointer to a heap-allocated object like 

RString, RArray, etc.

Every object that needs GC management — like 
RString, RArray, RClass, etc. — is stored as 

an RVALUE.



Aside: mruby API



Questions?


